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We report the results of calculations and analysis concerning the dependence of 
the dielectric response function e(~o, q) on frequency co and wave number q in 
one-dimensional conductors. The localization of electron states leads to 
unusually complicated dependences of e(co, q) on co and q in low-frequency and 
long-wavelength regions, while the spatial and time dispersions become closely 
interwoven with each other. The effect of geometric resonance is discussed. It 
appears as quasiharmonical oscillations of complex susceptibility as function of 
co and q, owing to the hopping nature of electron conductivity in a nonuniform 
electromagnetic field. 

KEY WORDS: One-dimensional disordered systems; one-dimensional con- 
ductor; the localization of electron states; dielectric response function; time and 
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1. I N T R O D U C T I O N  

The basic feature of a perfect crystal is that the atoms regularly disposed at 

lattice sites do not scatter electrons in definite energy regions, which is due 

to the quantum nature of electronic motion. In such allowed energy bands, 
the electronic wave functions, though modified with respect to the plane 

waves, yet extend over the whole of a crystal. In other words, the probabil i ty 
of finding the quasiparticle in any volume element of a perfect crystal is a 
nonzero constant. The fact that random lattice irregularities in real crystals 
give rise to the scattering of quasiparticles had been realized a long time ago. 
L Lifshitz was the first to point out the possibility and to give conditions for 
appearance of a new kind of quasiparticle states which are localized near the 
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breakings of translational symmetry in a crystal. He developed the 
mathematical approach for description of such localized states known as 
"the regular disturbance method. ''~1) This method proved to be so effective as 
to enable even studying surface vibrations, while taking the free boundary of 
the crystal as the violation of its spatial homogeneity. ~2) These papers have 
laid the foundations of the wide region in solid state physics that is 
investigations of disordered systems. The results obtained in this field by I. 
Lifshitz and his co-workers and students have recently been summarized in a 
monograph ~3) along with the review of the current state of the disordered 
system physics. 

The existence of a macroscopic number of localized states is the most 
distinguishing feature of disordered systems. For electrons in metals this 
phenomenon has been revealed by Anderson. ~4) The localization affects most 
pronouncedly the properties of one-dimensional metals where all the elec- 
tronic states become localized in arbitrarily small random potential. ~5) This 
is due to anomalously large fluctuations of phases in the wave functions of 
electrons moving in one dimension. A consistent approach incorporating this 
physical idea in adequate mathematical form was represented in a book ~3) by 
I. Lifshitz et al. 

The transformation of propagating waves to localized wave functions of 
electrons causes, in the first place, the changes in kinetic characteristics. One 
of the most important of them is the complex dielectric response function 

e(co, q) = e' (co, q) + ie" (co, q) (1.1) 

which is connected with the polarizability a(co, q) and dissipative conduc- 
tivity a(co, q) by the following relationships: 

e'(co, q) = 1 +47ca(co, q), e"(co, q)= 4--~-~ a(co, q) (1.2) 

Here co and q are, respectively, the frequency and wave number of an 
external electromagnetic field. 

The localization effects influence essentially the time and spatial 
dispersions of the response function. Among all the variety of problems 
arising thereby, only the co dependence of e(co) at q = 0, that is in a uniform 
alternating field, has been so far investigated in detail. In this case, the low- 
frequency conductivity a(co) was qualitatively analyzed by Mott. (6) He 
pointed out that a(co)~ 09 2 lnZco with co ~ 0. This kind of low-frequency 
behavior of a(co) has been confirmed by Berezinsky (7) within the frame of 
rigorous approach based on the direct summation of perturbation theory 
expansions. Using Berezinsky's equations, in ReL 8 the numerical 
calculations of e'(co) and a(co) have been performed with arbitrary values 
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ofog. The maximum has been found which a(og) has at ~or ~ 0.62, r being the 
mean free time of electron with respect to the backscattering. Near this 
frequency e'(cn) changes its sign. The temperature dependence of the static 
conductivity a(0) caused by scattering on phonons has been discussed by 
many authors. All the results obtained are reviewed by Gogolin. ~ 

It should be stressed, however, that not the time dispersion of the 
response function, but the spatial one turns out to be most susceptible to the 
structure and geometrical characteristics of localized wave functions. In prin- 
ciple, Berezinsky's equations allow one to find the dependence of c(oJ, q) 
on q. Nonetheless, the spatial dispersion of e(oJ, q) was not studied up until 
recently because considerable mathematical difficulties arise. 

In this paper we will examine the dispersion of the dielectric response 
function ~(~o, q) throughout the whole range of o)'s and q's, at zero 
temperature, using Berezinsky's equations. In the next section the basic 
relationships are adduced which make up a starting point for calculating the 
polarizability and conductivity in the low-frequency limit; also the effect of 
fluctuations of the relaxation time in the one-dimensional system is discussed 
which has been predicted by one of the authors. C1~ In the third section we 
analyze the effect of geometrical resonance in dissipative conductivity, (1~) 
which is due to the hopping nature of the conductivity with a fixed length of 
jumps in a nonuniform field of external wave. In the final section the high- 
frequency dielectric susceptibility is investigated on the basis of the general 
formula for e(e), q), being valid at any frequencies and wave numbers. 

2. LOW-FREQUENCY DIELECTRIC SUSCEPTIBILITY 

The dielectric response function in a one-dimensional with allowance 
for the time and spatial dispersions can be calculated, according to Ref. 7, 
with the formula 

f? e(co, q) = 1 + (~opr) 2 dt e-Xt[y(t ,  q) + y(t, - q ) ]  
(2.1) 

x = -2i~ov 

Here ogp is Lengmuir's frequency of electrons, r is the mean free time of 
electron with respect to the backscattering. The function y ( t , q )  is the 
solution of the equation 

d [ t ( l + t ) ~ t J + x t d [ ( l + t ) y ] - i ( e o - q v ) r y  
dt 

= - x e  x~'+t) Ei[--x(1 + t)] (2.2) 

considered on the semiaxis 0 ~< t < ov along with the boundary conditions 
which demand y(t)  to be finite at t = 0 and vanishing with t ~ +or .  Ei(z) is 
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the integral exponential function, v is the Fermi velocity. Equations (2.1) and 
(2.2) enable us to find the dispersion of ~(o~, q) at arbitrary co and q. But so 
far Eq. (2.2) has been solved explicitly only in the limiting cases of low or 
high frequencies. Here we will consider the dispersion of e(og, q) in the low- 
frequency region, ogr ~ 1. 

Because of the localization, a one-dimensional system of electrons 
behaves like an insulator where the real part of e(co, q) is large compared 
with its imaginary part. Therefore, let us calculate first e'(~o,q), which is 
determined by the values of y(t) with large arguments, t ~ 1Ix. Introduce a 
new variable ~ = x(1 + t) and rewrite Eq. (2.2) in terms of~: 

d~ (~2 d~) + ~ d-~ (~v) + x ~-~ - q v ) r y  

= xe ~ Ei(-~) (2.3) 

In the main approximation we put x = 0 in the left-hand side of 
Eq. (2.3) and find the exact solution Yo(~) of the remaining equation: 

x ( ~ ) l / 2  f :  sh(n/'t/2) Ki~,/2(~/2) 
YO(r = y e g/2 dp/~ (2.4) 

ch2(zc~t/2) v(~) + iql 

where l =  vr is the mean free path, Kiu(z ) is Macdonald's function with 
imaginary index, v(~)= (1 +/~2)/4. Inserting Eq. (2.4) into (2.1), we get 

(2.5) e'((.o, q) = 1 + 2(~Opr) 2 Jo d/~ w0(/~ ) p 2 ([./) + (ql) 2 

~2 ~ shQtp/2) 
w~ 2 ch3(zq~/2) (2.6) 

The structure of Eqs. (2.4) and (2.5) points out that v(/~) has the sense 
of the dimensionless (measured in units of l/r) collision frequency of 
electrons scattered by impurities. The value v(/~) is a real and positive eigen- 
value of an operator determined by the two first terms in the left-hand side of 
Eq. (2.3). Hence, this operator may be interpreted as a quantum-mechanical 
operator of the collision frequency. From this viewpoint, the integration over 
/1 in Eq. (2.5) means averaging the energy denominators [v(~) + iql] 1 over 
different values of the collision frequency v(#), with the probability 
distribution function w0(/a ) for the "quantum numbers" ~t > 0. While positive 
and normalized, the function w0(/a ) really has the sense of a distribution 
function. It should be stressed however, that the averaging over ~t is carried 
out at a fixed quantum state of the electron, so it in principle cannot be 
treated as averaging over diverse electron states. 
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Consequently, the result obtained, (2.5), shows that in a one- 
dimensional system the transport collision frequency for an electron having 
fixed momentum and spin does not have any definite value, but fluctuates 
like a dynamical variable in the quantum mechanics. 

The nature of the collision frequency fluctuations can be understood by 
the following physical considerations. The localization of electron states in a 
one-dimensional system arises due to a finite probability for an electron to be 
scattered backwards, which is equal to 1/r. In other words, an electron 
moves in one direction during the time r and then is scattered in the opposite 
direction. For various electrons these times should be different just because it 
is only a probability of the backscattering that is given. The diversity in the 
scattering times is the very thing to cause the fluctuations of the relaxation 
frequency. These fluctuations have a phase origin, since the finite relaxation 
time arises as a result of the fluctuations of phases in wave functions/12) It is 
just for this reason that the fluctuations of the collision frequency have a 
quantum nature.(1~ 

In Eq. (2.5), the leading term in the asymptotic expansion of e'(o~, q) 
does not depend on co, but includes the spatial dispersion effects. In the 
limiting cases of small or large ql we get: 

e'(co, q) = 1 + 4~(3)(mpr) 2, 

e'(~o,q)= l + (ql) 2 , 

(ql) z ~ 1 (2.7a) 

(ql) 2 >> 1 (2.7b) 

where ~(z) is the ~-function of Riemann. The expression (2.7a) for e'(0, 0) 
was first obtained in Ref. 13. 

In the next approximation in a)T there appear both a nonzero imaginary 
(dissipative) part e"(co, q) and the frequency dispersion of e'(o), q). In order 
to calculate e"(m, q), it is sufficient to drop the second term in the left-hand 
side of Eq. (2.2), since the main contribution in the integral (2.1) comes from 
large t's, t ~ 1Ix. After this is done, we arrive at an equation which can be 
solved exactly. Denoting this solution yl(t), we find 

l /2 
~ :  /l sh(rc~t/2) Ki,/2(x/2 ) P-(l+i,)/2( 1 + 2t) (2.8) 

Yl(t) - 2 eX/2 dp ch2(rq2/2) v(p) + iql 

where P~(z) is Legendre's function. Inserting Eq. (2.8) into Eq. (2.1) and 
calculating integrals, we obtain at ql ~ 1: 

- 2 q l ( l n 4 + C - 1 ) s i n ( 2 q I l n - ~ - ) ]  I (2.9) 



82 Kaner and Chebotarev 

where C=0.577. . .  is Euler's constant. The expression (2.9) exhibits 
unusually complicated dependence of e"(~o, q) on o~ and q in the region of 
low frequencies and long wavelengths. Here the time and spatial dispersions 
of e"(co, q) become whimsically entangled. 

If 2ql I ln(cor/2)t ~ 1, Eq. (2.9) gives Berezinsky's result: 

e"(og, q) = 4(copr)2(ogr){ln2(2~or) + (2C - 3) ln(2ogr) + const} (2.10) 

At ql >> 1 we find for the dissipative part of e(~o, q) the expression 

e"(~o, q) = 2(copr) 2 ~or (2.11) 
(qi) 4 

In this region of ql, e"(o9, q) is proportional to 1/r. This means that the 
collisionless Landau damping is absent, so the dissipative mechanism is 
connected with electron-impurity collisions. 

The same function yl(t) allows us to find the frequency dependence of 
the real part e'(~o, q). At small ql, ql ~ 1, the correction for (2.7a) is found 
with a logarithmic accuracy: 

2 2~ (2ql In--~-) (2.12) &'(og, q) = z~(ogpr) ~ -  (o9r/2) 2~qt)2 sin 

In particular, when q! is so small that 2ql Iln(~oT/2)l ~ 1 and e"(~o, q) is 
given by Eq. (2.10), the real part of e(r q) is 

e'(co, q) = 1 + 4(coS)2[r + ncor ln(oor) + O(cor)] (2.13) 

The og-dependent correction for Eq. (2.7b) at ql >> 1 has a relatively 
small (cot) 2 compared to the second term in (2.7b), so it will not be written 
here. 

3. THE EFFECT OF GEOMETRIC  RESONANCE 

The formulas (2.9) and (2.12) obtained in the previous section show 
that both imaginary and real parts of the dielectric response function 
oscillate as functions of frequency ~o or wave number q. These oscillations 
are exhibited in the region x ~ 1, 

K2Lo, < 1 < xLo~, x = ql, Lo, = 2 ln(2/cor) (3.1) 

The dissipative conductivity 0(09, q) in this region, according to (2.9) 
and (1.2), is 

a(w, q) 4(cot) 2 sin2 + , a 0 - (3.2) 
a 0 m 
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The oscillation's period in x is 27~/Lo,, the relative amplitude is of order 
2/K2Lo,, while the minimum value is 2(o)1') 2 Lo,. In the range 1/L~o ~ K z < 1, 
the oscillating terms become exponentially small, so a(0), q) = 2(0)rflc) 2 a0. 

Let us dwell on the physical nature of these oscillations. Equation (3.2) 
reveals a characteristic electronic length 2l ]ln(0)r/2)t which determines the 
oscillation's period in a nonuniform field of external wave. It easily seen that 
this length may be taken as the fixed (at given 0)) length of an electron's 
jump between two localized states having energy levels separated from each 
other by a quantum 0). Indeed, in accordance with Ref. 12, the low-frequency 
conductivity can be estimated by the order of magnitude, following the 
formula 

q~a(0), _lD(0) ,q) l  2 (3.3) 
Go 

Here D(0), q) is the dimensionless Fourier transform of the velocity's matrix 
element: 

D(0), q) = . d{ V,v+ o,(r e/~ ~ + ~ e j V/,F({ ) (3.4) 

calculated between the wave functions of localized states having energies e v 
and ee + co (ee is the Fermi energy): 

g%(~) = exp(-t  gl/2), ~,~+ o,(~) = exp(-] ~ - Lo, I/2) (3.5) 

The maxima of these functions are set apart at a distance L,o from each 
other because their energy difference is co, 0) ~ t/l ' .  (12) The main contribution 
in the integral (3.4) at small x gives the interval 0 < { < Lo,, so we find 

iD(0),q)12=e_L,ol ( x ~ _ ~ _ ~ ) ( 2 ~ v )  2 ( 0)r)  ~-~ sin 2 = sin 2 ql In ~ -  (3.6) 

This result coincides with the first two terms in Eq. (2.9) to an accuracy 
of a numerical factor. 

Hence, the quasiharmonical oscillations in both the conductivity a(0), q) 
and the susceptibility e'(0),q) are the effect of the geometric resonance's 
type, predicted in Ref. 11. Much like the geometric resonance in the sound 
attenuation in a magnetic field in metals, (14) the oscillations found result 
from the nonmonotonic dependence of the overlap integral on the phase 
increment which arises when an electron jumps over the distance 
21]ln(0)r/2)]. Note that the correct result (3.6) can be obtained only provided 
the wave function of a localized state has a kink near its maximum. Thus 
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Fig. 1. The dependence of ~-(K) on wave number q with various ~or: 1, 10 2; 2, 10 3; 
3, 10-4; 4, 10 6. 

one should think that the wave function (3.5) giving the geometric 
oscillations (2.9). reproduces correctly the structure of  a localized electron 
state. 

The calculated dependence of the function J ' (~c)  given by the 
expression in brackets of Eq. (2.9) is plotted in Fig. 1 at various o r .  The first 
oscillation is prominently visible, while the second one appears  with 
sufficiently small o r .  The further periods cannot  be seen, for they are located 
at ql such that the amplitude of the oscillating term becomes negligibly 
small. 

4. H I G H - F R E Q U E N C Y  DISPERSION OF THE SUSCEPTIBILITY 

While analyzing representations for e(e), q) in various limits, we arrive 
at a conclusion that the expression for the dielectric response function in a 
one-dimensional conductor should have at any co and q the form 

iD .(x)lo)r 
(4.1) 

where w~(It)  denotes the function 

w ~ ( p ) - -  ~ It sh(~It/2) 
2 ch2(~It/2) 

(4.2) 
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The summation in (4.1) is over the electronic states on the Fermi 
surface of one-dimensional conductor +P0 with the momentum distribution 
function, which is equal to 1/2. 

The function D~,(x) describes the influence of localization of electron 
states on the complex conduction. We call D~,(x) the "delocalization factor." 
Taking advantage of the results in Sec. 2, we can find the low-frequency 
behavior of D~(x), Ixl ~ 1: 

7"CX 7rX 
D~,(x) = - -  

The vanishing of the delocalization factor with x ~ 0 gives evidence of 
the known fact that in this limit the localization destructively affects the 
conductivity. ~3) 

In the high-frequency limit (Ix I ~ oo), D~,(x) goes to unity, which means 
switching off the localization effect in conductivity: 

D, (x)  = 1 2v(/t) i _ O ( 1 )  
x x-f (4.4) 

Thus, the formula (4.1) shows that the susceptibility e(m, q) of the one- 
dimensional conductor is determined by the combined influence of the two 
different effects, which are the localization of electron states, and the fluc- 
tuations of the collision frequency of electrons. The coupling of these two 
factors is manifested in that the function D~,(x) depends both on the 
frequency (x) and on/z. 

In the high-frequency limit, mr >> 1, from Eq. (4.1) and (4.4) we get 

= d/~ 1 + O (4.5) 
"0 [v(u) - iwr] 2 + (q/)2 

Integration over /~ retains even in this case, as before, the sense of 
averaging over the fluctuations of dimensionless collision frequency with the 
probability distribution function woo(B), written in Eq. (4.2). The expression 
for woo(/~) differs only slightly from the function w0(/~ ) describing the 
collision frequency distribution in the low-frequency limit. 

The function (4.2) has the following properties: 

;o fo dot w~(/l) = 1, d/l woo(,) v(/~) = 1 (4.6) 
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Equation (4.5) shows that in the main approximation in or ,  when one 
can drop v(/~) in the denominator, the real part of e(o, q) is given by Drude's 
formula: 

2 
cop (4.7) e'(co, q ) =  1 + ( q v ) 2  0.)2 

This expression fails in the resonance region, where 

1 
Io - qvl ~ - -  (4.8) 

T 

and one should retain the relatively small quantity v(ct) in the denominator of 
integrand (4.5). Hence, near this resonance the collision frequency's fluc- 
tuations can become revealed. 

As for Im e(o, q), Drude's formula gives an incorrect (half as much) 
numerical factor in the region of weak spatial dispersion, ql ~ 1, and the 
wrong dependence on o and q if qv ~> o .  

Outside the resonant region (4.8), Eq. (4.5) leads to the expression 

e"(o,  q) = 1 2c@o 
r ( q E v 2 -  toE) 2 (4.9) 

It is seen that at qv >>o Eq. (4.9) is transformed to Eq. (2.11). This 
means that the condition for the low-frequency asymptotics (2.7b) and (2.11) 
to hold at large ql is (q/)2 >> 1 + (or) z, whatever o r  may be. 

It should be emphasized that the expression for e " ( o , q )  including 
spatial dispersion effects cannot be obtained using conventional kinetic 
equation for electrons in one-dimensional metals. The results for e"(o,  q) can 
be qualitatively reproduced in the high-frequency region provided the 
localized electrons are considered as charged oscillators having characteristic 
natural frequency of the order I/r. 

The formulas (4.7) and (4.9) enable us to find the spectrum and 
damping of longitudinal plasma waves in one-dimensional metals. 

When the wave vector q makes an arbitrary angle a with conducting 
chaines, the expressions (4.7) and (4.9) still hold provided one puts cop-* 
cop cos a, qv --* qv cos a. So the frequency of Lengmuir's plasmon proves to 
be 

qZv2) i 
o ( q )  = I cos  a i 1 + (4.10) 

It is weakly damped if I cos a i ~> 1/cop r. 
Let us draw attention to the specific feature of one-dimensional 

conductors, Landau's damping being absent in them. This is due to the fact 
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that the electrons on the Fermi surface are in essence two monochromat ic  

beams with equal speeds but opposite velocities • [see (4.7) and (4.9)]. As 

a result, the averaging over electron states on the Fermi surface does not 
include integration over the directions of the vector v. As a consequence, the 

delta functions, ~(co i qv), describing Landau 's  damping do not appear. 

Nonetheless, spatial dispersion effects in the complex conduction of one- 
dimensional  conductors turn out to be much more complicated than one 

would expect if starting from intuitive analogy with three-dimensional 

metals. 
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